IV B.TECH - I SEM EXAMINATIONS, NOVEMBER - 2010
 TRANSPORT PHENOMENA
 (CHEMICAL ENGINEERING)

Time: 3hours
Max.Marks:80

Answer any FIVE questions All questions carry equal marks

1. State the similarities and differences among the three transfer operations. Express in a tabular form.
2. Derive the Hagon Poiseulle equation for a fluid flowing through a pipe of length L and radius R .
3. Using shell mass balance technique derive an equation for mass transfer when a liquid is evaporating into stagnant gas film at steady state.
4. Air at $27^{0} \mathrm{c}$ flows normal to a $73^{0} \mathrm{c}, 30 \mathrm{~mm}$ O.D water pipe. The air moves at $1 \mathrm{~m} / \mathrm{s}$. Estimate the rate of heat transfer per unit length of the pipe. Kinematic
Viscosity $=1.624 * 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$. Thermal conductivity $=0.0261 \mathrm{w} / \mathrm{m}^{0} \mathrm{k}, \mathrm{N}_{\mathrm{pr}}=0.702$.
5. Chlorine is being absorbed from a gas in a small experimental wetted wall tower. The absorbing fluid is water, which is moving with an average velocity of 17.7 $\mathrm{cm} / \mathrm{sec}$. What is the absorption rate in gm moles $/ \mathrm{hr}$ if $D_{\mathrm{cl}_{2}-\mathrm{H}_{2} \mathrm{O}}=1.26 * 10^{-5} \mathrm{~cm}^{2} / \mathrm{s}$. in the liquid phase and if the saturation concentration of chlorine in water is $0.823 \mathrm{~g} \mathrm{cl}_{2}$ per 100 g of water. Ignore chemical reaction between cl_{2} and $\mathrm{H}_{2} 0$. The tower height is 13 cm and radius is 1.4 cm .
6. Derive equation of continuity for a fluid flowing through a volume element and reduce it for incompressible fluid.
7. Determine the velocity and shear stress distribution for the tangential laminar flow of an incompressible fluid contained between two vertical co-axial cylinders, outer cylinder being rotating with an angular velocity. Neglect end effects. [16]
8. Derive time smoothed equation of motion.

IV B.TECH - I SEM EXAMINATIONS, NOVEMBER - 2010 TRANSPORT PHENOMENA (CHEMICAL ENGINEERING)

Time: 3hours
Max.Marks:80

Answer any FIVE questions All questions carry equal marks

1. Using shell mass balance technique derive an equation for mass transfer when a liquid is evaporating into stagnant gas film at steady state.
2. Air at $27^{0} \mathrm{c}$ flows normal to a $73^{0} \mathrm{c}, 30 \mathrm{~mm}$ O.D water pipe. The air moves at $1 \mathrm{~m} / \mathrm{s}$. Estimate the rate of heat transfer per unit length of the pipe. Kinematic Viscosity $=1.624 * 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$. Thermal conductivity $=0.0261 \mathrm{w} / \mathrm{m}^{0} \mathrm{k}, \mathrm{N}_{\mathrm{pr}}=0.702$.
3. Chlorine is being absorbed from a gas in a small experimental wetted wall tower. The absorbing fluid is water, which is moving with an average velocity of 17.7 $\mathrm{cm} / \mathrm{sec}$. What is the absorption rate in gm moles/hr if $D_{\mathrm{Cl}_{2}-\mathrm{H}_{2} \mathrm{O}}=1.26 * 10^{-5} \mathrm{~cm}^{2} / \mathrm{s}$. in the liquid phase and if the saturation concentration of chlorine in water is $0.823 \mathrm{~g} \mathrm{cl}_{2}$ per 100 g of water. Ignore chemical reaction between cl_{2} and $\mathrm{H}_{2} 0$. The tower height is 13 cm and radius is 1.4 cm .
4. Derive equation of continuity for a fluid flowing through a volume element and reduce it for incompressible fluid.
5. Determine the velocity and shear stress distribution for the tangential laminar flow of an incompressible fluid contained between two vertical co-axial cylinders, outer cylinder being rotating with an angular velocity. Neglect end effects. [16]
6. Derive time smoothed equation of motion.
7. State the similarities and differences among the three transfer operations. Express in a tabular form.
8. Derive the Hagon Poiseulle equation for a fluid flowing through a pipe of length L and radius R .

IV B.TECH - I SEM EXAMINATIONS, NOVEMBER - 2010
 TRANSPORT PHENOMENA
 (CHEMICAL ENGINEERING)

Time: 3hours
Max.Marks:80

Answer any FIVE questions All questions carry equal marks

1. Chlorine is being absorbed from a gas in a small experimental wetted wall tower. The absorbing fluid is water, which is moving with an average velocity of 17.7 $\mathrm{cm} / \mathrm{sec}$. What is the absorption rate in gm moles $/ \mathrm{hr}$ if $D_{\mathrm{Cl}_{2}-\mathrm{H}_{2} \mathrm{O}}=1.26 * 10^{-5} \mathrm{~cm}^{2} / \mathrm{s}$. in the liquid phase and if the saturation concentration of chlorine in water is $0.823 \mathrm{~g} \mathrm{cl}_{2}$ per 100 g of water. Ignore chemical reaction between cl_{2} and $\mathrm{H}_{2} 0$. The tower height is 13 cm and radius is 1.4 cm .
2. Derive equation of continuity for a fluid flowing through a volume element and reduce it for incompressible fluid.
3. Determine the velocity and shear stress distribution for the tangential laminar flow of an incompressible fluid contained between two vertical co-axial cylinders, outer cylinder being rotating with an angular velocity. Neglect end effects. [16]
4. Derive time smoothed equation of motion.
5. State the similarities and differences among the three transfer operations. Express in a tabular form.
6. Derive the Hagon Poiseulle equation for a fluid flowing through a pipe of length L and radius R .
7. Using shell mass balance technique derive an equation for mass transfer when a liquid is evaporating into stagnant gas film at steady state.
8. Air at $27^{\circ} \mathrm{c}$ flows normal to a $73^{\circ} \mathrm{c}, 30 \mathrm{~mm}$ O.D water pipe. The air moves at $1 \mathrm{~m} / \mathrm{s}$. Estimate the rate of heat transfer per unit length of the pipe. Kinematic
Viscosity $=1.624 * 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$. Thermal conductivity $=0.0261 \mathrm{w} / \mathrm{m}^{0} \mathrm{k}, \mathrm{N}_{\mathrm{pr}}=0.702$.

IV B.TECH - I SEM EXAMINATIONS, NOVEMBER - 2010 TRANSPORT PHENOMENA (CHEMICAL ENGINEERING)

Time: 3hours
Max.Marks:80

Answer any FIVE questions All questions carry equal marks

1. Determine the velocity and shear stress distribution for the tangential laminar flow of an incompressible fluid contained between two vertical co-axial cylinders, outer cylinder being rotating with an angular velocity. Neglect end effects. [16]
2. Derive time smoothed equation of motion.
3. State the similarities and differences among the three transfer operations. Express in a tabular form.
4. Derive the Hagon Poiseulle equation for a fluid flowing through a pipe of length L and radius R .
5. Using shell mass balance technique derive an equation for mass transfer when a liquid is evaporating into stagnant gas film at steady state.
6. Air at $27^{\circ} \mathrm{c}$ flows normal to a $73^{0} \mathrm{c}, 30 \mathrm{~mm}$ O.D water pipe. The air moves at $1 \mathrm{~m} / \mathrm{s}$. Estimate the rate of heat transfer per unit length of the pipe. Kinematic
Viscosity $=1.624 * 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$. Thermal conductivity $=0.0261 \mathrm{w} / \mathrm{m}^{0} \mathrm{k}, \mathrm{N}_{\mathrm{pr}}=0.702$.
7. Chlorine is being absorbed from a gas in a small experimental wetted wall tower. The absorbing fluid is water, which is moving with an average velocity of 17.7 $\mathrm{cm} / \mathrm{sec}$. What is the absorption rate in gm moles $/ \mathrm{hr}$ if $D_{\mathrm{cl}_{2}-\mathrm{H}_{2} \mathrm{O}}=1.26 * 10^{-5} \mathrm{~cm}^{2} / \mathrm{s}$. in the liquid phase and if the saturation concentration of chlorine in water is $0.823 \mathrm{~g} \mathrm{cl}_{2}$ per 100 g of water. Ignore chemical reaction between cl_{2} and $\mathrm{H}_{2} 0$. The tower height is 13 cm and radius is 1.4 cm .
8. Derive equation of continuity for a fluid flowing through a volume element and reduce it for incompressible fluid.
