Code.No: RR410801

IV B.TECH – I SEM EXAMINATIONS, NOVEMBER - 2010 TRANSPORT PHENOMENA (CHEMICAL ENGINEERING)

Time: 3hours

Max.Marks:80

Answer any FIVE questions All questions carry equal marks

- 1. State the similarities and differences among the three transfer operations. Express in a tabular form. [16]
- 2. Derive the Hagon Poiseulle equation for a fluid flowing through a pipe of length L and radius R. [16]
- 3. Using shell mass balance technique derive an equation for mass transfer when a liquid is evaporating into stagnant gas film at steady state. [16]
- 4. Air at 27[°]c flows normal to a 73[°]c, 30mm O.D water pipe. The air moves at 1m/s. Estimate the rate of heat transfer per unit length of the pipe. Kinematic Viscosity = $1.624*10^{-6}$ m²/s. Thermal conductivity = 0.0261w/m[°]k, N_{pr} = 0.702. [16]
- 5. Chlorine is being absorbed from a gas in a small experimental wetted wall tower. The absorbing fluid is water, which is moving with an average velocity of 17.7 cm/sec. What is the absorption rate in gm moles/hr if $D_{cl_2-H_2O} = 1.26*10^{-5} \text{ cm}^2/\text{s}$. in the liquid phase and if the saturation concentration of chlorine in water is 0.823g cl₂ per 100 g of water. Ignore chemical reaction between cl₂ and H₂0. The tower height is 13 cm and radius is 1.4cm. [16]
- 6. Derive equation of continuity for a fluid flowing through a volume element and reduce it for incompressible fluid. [16]
- 7. Determine the velocity and shear stress distribution for the tangential laminar flow of an incompressible fluid contained between two vertical co-axial cylinders, outer cylinder being rotating with an angular velocity. Neglect end effects. [16]
- 8. Derive time smoothed equation of motion. [16]

RR

IV B.TECH – I SEM EXAMINATIONS, NOVEMBER - 2010 TRANSPORT PHENOMENA (CHEMICAL ENGINEERING)

Time: 3hours

Code.No: RR410801

Max.Marks:80

Answer any FIVE questions All questions carry equal marks

- 1. Using shell mass balance technique derive an equation for mass transfer when a liquid is evaporating into stagnant gas film at steady state. [16]
- 2. Air at 27° c flows normal to a 73° c, 30mm O.D water pipe. The air moves at 1m/s. Estimate the rate of heat transfer per unit length of the pipe. Kinematic Viscosity = $1.624*10^{-6}$ m²/s. Thermal conductivity = 0.0261w/m^ok, N_{pr} = 0.702. [16]
- 3. Chlorine is being absorbed from a gas in a small experimental wetted wall tower. The absorbing fluid is water, which is moving with an average velocity of 17.7 cm/sec. What is the absorption rate in gm moles/hr if $D_{cl_2-H_2O} = 1.26*10^{-5} \text{ cm}^2/\text{s}.$

in the liquid phase and if the saturation concentration of chlorine in water is $0.823 \text{ g cl}_2 \text{ per } 100 \text{ g of water}$. Ignore chemical reaction between cl_2 and H_20 . The tower height is 13 cm and radius is 1.4cm. [16]

- 4. Derive equation of continuity for a fluid flowing through a volume element and reduce it for incompressible fluid. [16]
- 5. Determine the velocity and shear stress distribution for the tangential laminar flow of an incompressible fluid contained between two vertical co-axial cylinders, outer cylinder being rotating with an angular velocity. Neglect end effects. [16]
- 6. Derive time smoothed equation of motion. [16]
- 7. State the similarities and differences among the three transfer operations. Express in a tabular form. [16]
- 8. Derive the Hagon Poiseulle equation for a fluid flowing through a pipe of length L and radius R. [16]

RR

IV B.TECH – I SEM EXAMINATIONS, NOVEMBER - 2010 TRANSPORT PHENOMENA (CHEMICAL ENGINEERING)

Time: 3hours

Code.No: RR410801

Max.Marks:80

Answer any FIVE questions All questions carry equal marks

1. Chlorine is being absorbed from a gas in a small experimental wetted wall tower. The absorbing fluid is water, which is moving with an average velocity of 17.7 cm/sec. What is the absorption rate in gm moles/hr if $D_{cl_2-H_2O} = 1.26*10^{-5} \text{ cm}^2/\text{s}.$

in the liquid phase and if the saturation concentration of chlorine in water is $0.823 \text{ g cl}_2 \text{ per } 100 \text{ g of water}$. Ignore chemical reaction between cl_2 and H_20 . The tower height is 13 cm and radius is 1.4cm. [16]

- 2. Derive equation of continuity for a fluid flowing through a volume element and reduce it for incompressible fluid. [16]
- 3. Determine the velocity and shear stress distribution for the tangential laminar flow of an incompressible fluid contained between two vertical co-axial cylinders, outer cylinder being rotating with an angular velocity. Neglect end effects. [16]

4. Derive time smoothed equation of motion. [16]

- 5. State the similarities and differences among the three transfer operations. Express in a tabular form. [16]
- 6. Derive the Hagon Poiseulle equation for a fluid flowing through a pipe of length L and radius R. [16]
- 7. Using shell mass balance technique derive an equation for mass transfer when a liquid is evaporating into stagnant gas film at steady state. [16]
- 8. Air at 27° c flows normal to a 73° c, 30mm O.D water pipe. The air moves at 1m/s. Estimate the rate of heat transfer per unit length of the pipe. Kinematic Viscosity = $1.624*10^{-6}$ m²/s. Thermal conductivity = 0.0261w/m^ok, N_{pr} = 0.702. [16]

RR

[16]

IV B.TECH – I SEM EXAMINATIONS, NOVEMBER - 2010 TRANSPORT PHENOMENA (CHEMICAL ENGINEERING)

Time: 3hours

Code.No: RR410801

Max.Marks:80

Answer any FIVE questions All questions carry equal marks

- 1. Determine the velocity and shear stress distribution for the tangential laminar flow of an incompressible fluid contained between two vertical co-axial cylinders, outer cylinder being rotating with an angular velocity. Neglect end effects. [16]
- 2. Derive time smoothed equation of motion.
- 3. State the similarities and differences among the three transfer operations. Express in a tabular form. [16]
- 4. Derive the Hagon Poiseulle equation for a fluid flowing through a pipe of length L and radius R. [16]
- 5. Using shell mass balance technique derive an equation for mass transfer when a liquid is evaporating into stagnant gas film at steady state. [16]
- 6. Air at 27° c flows normal to a 73° c, 30mm O.D water pipe. The air moves at 1m/s. Estimate the rate of heat transfer per unit length of the pipe. Kinematic Viscosity = $1.624*10^{-6}$ m²/s. Thermal conductivity = 0.0261w/m⁰k, N_{pr} = 0.702. [16]
- 7. Chlorine is being absorbed from a gas in a small experimental wetted wall tower. The absorbing fluid is water, which is moving with an average velocity of 17.7 cm/sec. What is the absorption rate in gm moles/hr if $D_{cl_2-H_2O} = 1.26*10^{-5} \text{ cm}^2/\text{s}$. in the liquid phase and if the saturation concentration of chlorine in water is 0.823g cl₂ per 100 g of water. Ignore chemical reaction between cl₂ and H₂0. The tower height is 13 cm and radius is 1.4cm. [16]
- 8. Derive equation of continuity for a fluid flowing through a volume element and reduce it for incompressible fluid. [16]
